
Chapter 6

[133]

Behavioral patterns are related to how the objects co-ordinate and communicate
with each other. The Command design pattern is a famous behavioral pattern.

An important point to note is that sometimes a design pattern may use some other
design patterns to solve a particular problem. So a design pattern is not atomic in
nature but may comprise of multiple patterns. Also, there is no strict rule when
following a design pattern, which means you don't need to copy it word-for-word,
or code-by-code. A design pattern is just an approach that has worked well in similar
cases for other developers. Not all situations or programming problems are the same.
Hence, if we are following a particular design pattern we might need to modify it to
suit our custom needs, instead of blindly following it verbatim.

There are a lot of design patterns, and discussing all of them is beyond the scope of
this book. So we will focus only on a few important, basic ones that every developer
must be aware of when developing web applications in ASP.NET.

Singleton Pattern
Singleton is a creational design pattern that helps us restrict and control the number
of objects instantiated for a particular class throughout the application life cycle. In
this section, we will understand this design pattern by examining some example
code. Singleton is one of the most widely used patterns in ASP.NET.

A common programming problem is to create a single instance of an object and
make sure that there are no other instances except this single instance. Only this
instance should serve all incoming requests and communicate with other objects. The
Singleton pattern is a design pattern that can be used to implement such scenarios.

There may be numerous programming scenarios when we may need to restrict an
object to a single instance. Some of them are:

A single instance of a mail server might be required to process all incoming
mail requests.
The Session object in ASP.NET is implemented using singleton pattern. That
is why each user will have only one session instance accessible at any point
of time.
The Application object in ASP.NET is also singleton based. There is only
one instance of the Application object for an entire application.
We may need a single instance of a logging utility to process all logging
requests in our application.

•

•

•

•

Design Patterns

[134]

The ASP.NET framework itself implements a singleton pattern. Besides, in the
Session object, the singleton pattern can be seen in the way a framework handles
the worker process. We have one and only one instance of the work process catering
to all incoming HTTP requests.

Understanding Singleton with Code Example
Let's understand the Singleton pattern with the help of an example. In our OMS
application, we have many orders coming in, and we want all customers to be
notified whenever they place an order. For this, we have an EmailManager class.
This class has the responsibility to send emails to all customers who have placed
orders. Now, because ASP.NET is multi-threaded (it creates a new thread for each
new client request), if we start creating a new instance of the EmailManager (as in
EmailManager em = new EmailManager()) to process emails, we will have a lot of
such instances, for multiple requests. In simple terms, if 50 customers placed their
orders through the web site, we will have 50 instances of the EmailManager object.
So let's assume that the requirement is to handle all emails in one instance and avoid
having many instances as this might have a performance impact on server memory.

Ideally, we should have a separate email application which would be
handling all of these application-related emails. There can be different
ways of handling emails in different applications. However, for the
purpose of understanding design patterns, we will assume that we have
to use Singleton to restrict the creation of EmailManager instances in our
application.

So how can we make sure that there is one and only once instance of the
EmailManager class throughout the life of our application? One approach is the use
of Static classes in ASP.NET. Static classes are defined using the static keyword
and the .NET compiler makes sure that there is no instance of a static class, and its
methods can be called without creating any instance, as in:

public static EmailManager
{

 public static MyMethod()

 //other static methods

}

